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Abstract. The parameter dynamics of super-sech and super-Gaussian pulses for the perturbed nonlinear
Schrédinger’s equation with power-law nonlinearity is obtained in this article. The variational principle success-
fully recovers this dynamical system. The details of the variational principle with the implementation of the
Euler—Lagrange’s equation to the nonlinear Schrédinger’s equation with power-law of nonlinearity described
in this paper have not been previously reported.
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1 Introduction

The dynamics of optical solitons is a long standing study that has now extended over half-a-century. Various aspects of
soliton science have been reported. Notably, most of the papers are from the integrability aspects of a variety of models that
arose from wide range of self-phase modulation (SPM) structures. A few papers are from additional, sparingly visible, topics
such as conservation laws, quasimonochromatic solitons with the usage of perturbation theory, stochastic perturbation and
the corresponding mean free velocity of the soliton and others.

One of the most viable topics that serves as an important foundation stone in optical soliton dynamics is the recovery of
the soliton parameter dynamics such as the amplitude, width, center position, phase constant and similar such parameters.
This can be achieved in several different ways. A few such mathematical approaches are the soliton perturbation theory,
collective variables approach and the moment method. However, for example, soliton perturbation theory has its shortcom-
ings. It fails to recover the variation of the phase constant as well as the variation of the center position of the soliton. The
variational principle (VP) overcomes this hurdle. This has been succesfully and widely applied to various areas of Physics
and Engineering such as Condensed Matter Physics, Fluid Dynamics and Fiber Optics including dispersion-managed
solitons [1-20].
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The advantages and necessity of obtaining the dynamical system of soliton parameters are multifold. The study of soli-
ton features in optics can be further enhanced through the utilization of these parameter dynamics. Four wave mixing
effects, collision-induced timing jitter, and various other phenomena are among those that are included. Therefore, the
parameter dynamics with the existence of perturbation terms is being studied by applying the VP to the nonlinear
Schrodinger’s equation (NLSE). Super-sech and super-Gaussian pulses are the two types of pulses being examined in this
context. This would give a generalized flavor to the study of soliton parameters. The details of the VP with the implemen-
tation of the Euler—Lagrange’s equation to NLSE with power-law of nonlinearity described in this paper have not been
previously reported. A quick and succinct introduction is followed by the presentation of results.

2 Unperturbed NLSE with power-law nonlinearity

The governing model of such equation is written as:
iq, + aq,, + blg[*"¢ =0, (1)

where the coefficients b and a are utilized to denote SPM and chromatic dispersion in sequence. The function ¢ = ¢(z, )
represents the wave profile in a complex-valued form, where 7 = v/—1. Equation (1) contains the linear temporal evolu-
tion, represented by the first term.

2.1 Variational principle

The Lagrangian (L) is associated with equation (1) is written as:

1 o . « « 2 2b 2n+2
L=35 /m {Z(qqt —q'q;) — 2d|q,| + 7 ld "l da. (2)

One obtains ¢* by complex-conjugating ¢. In equation (1), the assumed pulse ¢ = ¢(z, t) is presented as:
q(z, t) = A()f[B(t){z — 2(t)}] exp [—ir(t){z — 2()} + i0n(1)]. 3)

We use the symbols 0y(t), k(t), z(t), B(t), and A(t) to denote the soliton phase, soliton frequency, center position of the
soliton, pulse width, and soliton amplitude, respectively. Setting

s = B(t)[z — z(t)], (4)
then the pulse hypothesis (3) becomes
a(z, 1) = A(t)f(s) exp —i%s T+ i0y(1)[. 5)
Through the application of the provided equation
we conclude that:
o= 400 L= 50 1) exp | -5 s 0. g
and
o [ SISO 0180
A0 f(s) dedoit) +A(R(0)f(s) dflgt)] exp {—z% s+ z’@o(t)] . (8)

Substituting (5)—(8) into (2) and using the formula ds = B(t)dz, the Lagrangian (2) reduces to

A%(t) (d@o(t) i di(t) bA*" (1)

L=——- T (1) T CEDED) Iopni20, 9)

B0 (0 ) oA B +
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where

Lo = [ 57 (dﬁf)) as, (10)

and non-negative integers are the only values that a, b, and ¢ can assume.
The integrals of motion can be obtained from the pulse form (5), which can be derived, as presented below

> A (t
E= [w |(1|2daj = %]m,m (11)
N i 2A%(t)K(t
M=if (¢°a, — qq;)dz = %10,2@- (12)
The mathematical representation of the Hamiltonian takes the form of
% b . A (t bA®" (¢
H = /_DO {aqu I |q|2 ’H] dz = B((t)) [aBz(t)Io,oAz + ai®(t) o0 — (71_'_(1;-707271+2,0 . (13)

2.2 Parameter dynamics of the NLSE

Introducing the following Euler-Lagrange (EL) equation [4, 8] in this subsection leads to the derivation of the dynamical

system:
oL d /oL
—_ =) = 14
dp dt<@pt> " 4

where the soliton parameters A(t), B(t), z(t), k(t) and 0y(t) are represented by the variable p, where p denotes one of
them. The dynamic system below is derived by substituting (9) into (14):

[d@((l)gt) + x( )dz(:) - GKQ(t)} Looo — aB*(t)Ioga + bA*" (£)Lo2n20 = 0, (15)
_ {dgdol@ K )dz(tt) - aKQ(t)} Tons — aB2(t)o0s — be“? O p— (16)
dB(t) dA(t) di(t)
— () g+ 2BR() P+ AW B T =0, (17)
dz(tt) — 2ax(t), (18)
and
—A(t)di—it)—i-QB(t)%it): 0. (19)

For the pulse form given by (5), the equations (15)—(19) provide the general forms of the soliton parameter dynamics of
equation (1). The dynamic system (15)—(19) can be expressed in a simplified and reduced form as:

6, () (n+2)aB*(t) Loos

2
- _ _ 2
dt ax (t) n 10’2,07 ( 0)
2(n+ 1)(],B2(t) [[)()2
A*(t) = -, 21
( ) nb [0,2n+2,0 ( )
W) o e, (22)
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and

where the square roots of the energy are proportional to the constant K in (24). From (21) and (24), we have:

- 2a(n+ 1) ]0702

Bn72 t .
() nbK*  Ijani20

2.3 Super-Gaussian pulses

_32m

Assuming m > 0, the super Gaussian pulse function can be written as f(s) = e* . Then, one can obtain the integrals of

motion as:
Az(t) —-—— 1
- A0y r<2m> (26)
1
A (ti(t) 1—5—_( 1
M=="50 2 2mr<2m)’ 27

and the Hamiltonian is given by:

= 0 O (- L) () - e (L)

For u > 0, the gamma function is defined as I'(u). This compels the parameter m to be bounded below as given by

1
1 29
m>2 (29)

The pulse parameters can be obtained from the evolution equations (20)—(25), which can be expressed in a reduced form as:

doo(t) amB(t)(n +2)(2m —1) i T(1 —55)
EECh o ST o
A”(t) _ amB*(t)(2n -12—56) m(2m — 1) 21/2”LF(1—1‘(2—%5n) 7 31)
dz(t) _
7 = 2ak(1), (32)
dre(t) _
TR (33)
A(t) = K\/B(t), (34)
and
oy m2n+2) T @m 1), T(1 - o)
B = 2nbK*" 2 I'(:) (35)

Figures 1 and 2 provide a few plots of super-Gaussian pulse and super-sech pulse with the governing model (1), respectively.
These plots offer a visual depiction of the waveform characteristics and provide valuable insights into the behavior of the
pulses under investigation. The parameter vales chosen are: K =1, k(t) = 1,a=1,z(t) =2t, b=1,n= 1,5 and m = 2,5.
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Figure 1. Profile of a super-Gaussian pulse. (a) Surface plot. (b) 2D plots moving in time. (c) Contour plot.

2.4 Super-sech pulses

h2m s

For super-sech pulses, we set f{(s) = sec , m > 0. Then, one can address the equations governing the integrals of motion

that are expressed as:

_VEA()  TEm)
F="50 r@2m+i)’ (30)

C2ymA(tk(t) T(2m)
M= B(t) rm+1)’ (37)

and we can express the Hamiltonian as:
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Figure 2. Profile of a super-sech pulse. (a) Surface plot. (b) 2D plots moving in time. (¢) Contour plot.

dmym T(2m) 2" (2m+1)*(2m)

H = —4m?aA*(t)B(t)

dm+1T(2m+3) (4m + 1)[(4m)
22+2m + 1
—W2F1(2+2m,2+4m;3+2m;—1)] (38)
A1) oo T(2m)  /abA*() T(2(n+ Lm)
"B vaac(t rem+  (n+1) TRO+1)m+d)|

Here, the generalized form of Gauss’ hypergeometric function is expressed as:

JFo(ay, .. ay; bl,...bq;z):ng—!, (39)

and the symbol for the Pochhammer is:

L (10
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The pulse parameters are governed by the evolution equations (20)—(25), which can be expressed in a simpler form as:

doy(t) () + 4m*(n+2)aB* (O (2m+13) (4my/m  T(2m) 2" '(2m+ 1) (2m)
dt ny/ml(2m) 4m+1T(2m+1) (4m + 1)T(4m)
22+2m + 1
_m2F1(2+2m,2+4m,3+2m,—1)>, (41)
Jtn(p) — AP DaB (OF Rt Dmt ) ((4my/7_T(m)
B nby/nl(2(n + 1)m) 4m+1T(2m+1) (42)
24711,71(2m+ 1)1—*2(2m) 22+2m + 1
- - Fi(242m,2 + 4m; 2m;—1) ).
(4m + 1)T(4m) 3 om 22 2m 2+ dmi 3 4 2m; ))
dzsft) — 2a(t), (43)
drk(t)
= 44
o, (44)
A(t) = K\/B(D), (45)
and
- 4m*(n+ DL 2(n+)m+1Y) | 4my/al(2m)
B (t) = - 2n L
nbK*"/al(2(n+1)m)  |(dm+ 1)I(2m +1) (46)
2477L71(2m+ 1)r2(2m) 22+2m 11
— — Fi(242m,2+ 4m; 2m;—1)|.
(4m + 1)T(4m) 5 om 21 (2 2m, 2+ dmi3 4 2mi —1)
3 Perturbed NLSE with power-law nonlinearity
The equation is described by the following governing model:
ig, + aq,, + blg|"" g = ieR[q, q'], (47)

where R[q, ¢*] is given by:

2mq)T+9(|q|2m>1q+a|q|2qu
; 2 s 2k YN . 2m o 2m (48)
—ié(¢*q;), —maiq" — ilq*(¢*), — m(la™") ,q+ (o1g + 02q,) [ |gI™"ds,

—00

R=0|q""q+ aq, + Ba. + 2(|q

and €, 9, o, f§, 4, 0, 0, &, 5, {, u, a1 and a5 are constants, where € is from quasimonochromaticity. From (5) and (47), we
have

V) 4 g ps) %() — BAMWRA (D) (5)

R= {6A2m“(t) F(s) + 2 A B(t) =
df(s)

+[(2m + 1)4 + 2m0 + a] A" () B(1)f" () ) +[2¢ — 27 = 8LAY ) B(H)()f*(s) =7

ds

+AZ" ()01 f(s) / © P (s)ds + 0, A7 (1) B df;f) [ ©P(s)ds

ds

—i[aA(t)x(t)f(s) + 2BA(1) B(t) L2 4 [1 4 0] A2 ()k(£) 2 (s)
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d*f(s)
ds?

#2020 2076 (U) 4+ 2B OP

df(s)
ds

+[E — 4L — ) AP (K2 ()2 (5) + 2mud”™ " (£) B(1) f2"(s)

o AT ()(Df (5) / x f?m(s)ds} } exp [—i%s + i@o(t)] . (49)

3.1 Parameter dynamics of the perturbed NLSE

In this subsection, we derive the dynamical system of equation (47) by introducing the following Euler Lagrange (EL)

equation:
oL d /0L Y oq"* Jq
(=) = —_Rr1)a
op dt (610) “ /m (R o " ap) " (50)

where L is given by (9) and p is one of these same five parameters A(¢), B(t), Z(t), x(t) and 0y(?), respectively, while R'is
the complex-conjugate of R. Now, we have the following dynamic system:

do dz Toos any s Jo2n42
MO e T e = ap() L A () e
2m ‘ 2m 2m 10,2m+2,0
+ex(l) {oz + oA (t)/ f (s)ds] e () A (1)

—00 0,2,0

+e(E+n+40A% ()1 (D) fz;‘z + (28 +n+ 20 A%() BX(1) ﬁzz ; (51)
do, dz 5 9, Lo02 b on s 102042, 2 2 1022
_ git) + ke(t) zit) — ax (t)} = aB’(t) IE,Z,O + T AT() 01012,0 C—e(E+20)A(H)B (t)#m, (52)
—2B(t)k(t) %tt) — A(t)B(t) d’;it) + A(t)r(t) dﬁ—it) = 2e0K(t) B(t) A" () % — 2eBA() B ()[(t) + 2] ; Zzz
—2efB(t) A(t)i’ (t) — 4eumA*™ ' (£) B (t) ];j;’f + 2e0, B(t) A*™ (1) k(1) / F7"(s)ds, (53)
da(t)
T = 2ax(b), (54)
and

—2B(t) %ﬁ’f) + A(t) %ﬁ’f) = 2edB(t) A" (1) ! 0’20";2’“ — 2efA(t)B*(1) i’zz — 2eBB(t) A1) (t). (55)

The general forms of the soliton parameters dynamics of equation (47) for the pulse form given by (5) are represented by
equations (51)—(55). A simplified version of the dynamic system (51)—(55) is:

d0y(1) —re A" [e (E+20) A% L0220 — aloos] [Lopmezo(A+0) + 10,2,002/ fzm(s)ds}
0 —00

dt [2 alopp + A’e (E+ ’7)10,2,2] Iy

bA*{[(+20)n —n— e ALyns — a(n+2)Iog2 Hoz iz
(n+1) [2 alggs + A’ (& + ’1)10,2,2} Iyao

(K{GQAQ(i +20) [k A*(E+n +40) + o] + KaeA® (& + 1’1)}[0‘2,2)

_ —aK [KAQG(f +n+ 4() —+ oe — QGK] 1070,2 (56)
2alp02 + Azﬁ(f + 1) 1oz ’
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dz(t
Z(t ) = 2 ax(1),
di(t)  2€ [ omu 2 Lo2me /T 2 2 loo2
=— A" 2mu B* —== " 2 AB
it 4 { TR S e Rl i ool |
dB(t) B (dA(?) 21002 2m+1 Lo2m2,0
=— —A —efAB €0 A™™
dt A ( dt prie—cp Ioo ,0+ Ioso )’
o+ kA (E+n+40)
TLbAan()’Q n+2.0 — EK(TL + 1) (}» + G)AZmIO,Q m+2,0 + z IOAVZO
+62A2m/ me(S)dS
B(t) = oo
(n+1)[2a1002+€14 (é )1022]
where A = A(t), B = B(t) and k = x(?).
3.2 Super-Gaussian pulses
The dynamical system (56)—(60) is reduced to a simpler form for super-Gaussian pulses, which is:
€ (é + 2C)A22 (1-3m)/m (;L + U)m(2m)1/2m
—Ke A*"
dg()(t) B _02(1*27”)/27” _20.2(m + 1)1/27”1"(2m , 2m$27n)
dt [a21/2m + A26 (6 + ;7)2(1—3m)/m}( + 1)1/2m (2m)1/2m

N bA* ™ {eA’[(E+20)n—1n

_ 5])2(173m>/m _

a(n + 2)2(172m)/2m}

(TL+ 1)(1+2m)/2m[a21/2m+€A2(£+r’)2(173m)/m]

(K{62A2<5 +20) [ AX(E+ n+40) + o] + kaeA (& + y) Y20-3m/m

_[KAQ 6(6 4 n + 4:) +oe—2 CLK] aK2(172m)/2m

|

dr(t)
dt

= 2¢

a21/2m + €A2 (é + }1)2(1—3m)/m

d:;(tt) = 2 ak(t),
A2m,uB’2m2(2mf 1)(m+ 1)(1—4m)/2m21/m1—‘(1 7%)
T (z)
2K61F(ﬁ , 2m:172m)A2m BB2m(2m _ 1)21/m1—‘(1 _ ﬁ)
+ 1/2m F(L)
m(2m) 2m.
LAA) a0 A
Z dt - +1 1/2m
aB(t) _, T

epB*(2m —1)2"*"mI'(1

— L)
2m,

2(277%1)/2mr (ﬁ)

i

(64)



10 J. Eur. Opt. Society-Rapid Publ. 19, 38 (2023)

a+ kA (E+n+40)

bAQn ek 1 (1+2m)/2m21/m ‘ s
n € (n + ) (}v + G)AQm 2A27no_21—~(ﬁ72mx2m> (Qm) (65)

(m+ 1)1/2m m<2m)1/27n
m(2m _ 1)(n + 1)(l+2m)/2m21/2m[a21/2m + eAQ(f + ;7)2(173771)/77@ 1—*(1 _ L)

2m

B (t) =

The equations involve the incomplete gamma function, which is represented by I'(a, z).

3.3 Super-sech pulses

The dynamical system (56)—(60) simplifies to a specific form when considering super-sech pulses, as described below

doy(t) |(A+a)T(2(2m+1)m) T(2m)o,sech*™(x) F(
di T(2(2m + 1ym + ) AmC(2m+1)

1
5,2m; 2m + 1, sech%x))]

dmy/al(2m)  2"7(2m 4 1)I(2m)

e A4 4e(§+2g)A2m2ﬁr(4m)+4am2 4m + 1T (2m +1) (4m + 1) (4m)
—Ke€
— e F (2 +2m,2 + 4m; 3 + 2m; —1
> om 1(242m,2 4+ 4m;3 4+ 2m; —1)
4my/al(2m) 24m=1(2m 4 1)I*(2m)
sum? (4m+ 1) (2m+1) (4m + 1)[(4m) JeAP(E + mm2aT(dm) | T(2m)
— o F(2+2m,2 +4m; 3 + 2m; —1)
2+2m
dmy/zl(2m) 2" (2m+ DI (2m)
o 202 4m +1)T(2m + 3 4m+ 1)I(4
pazed AE+20n —n—EJe A m\/ﬁr(zim)+4a(n+2)m2 (4m + )T (2m + 3) (4m + 1) (4m) T'(2(n+ 1)m)
— 2 F1(242m,2 + 4m; 3 + 2m; —1)
dmym  T(2m)  2"'(2m+ 1)I*(2m)
| Am+1T(2m+1) (4m+ 1)I'(4m) 4A%(E 4+ n)ym>y/al(dm) | T(2m)

0 s
(1)) ~som g Sm+ )F(Am+1) (T(@m+d)

Ac{ @A (E+20) [k A2 (E+n+40) + o] + raeA®(E+n) }m?/al(4m)

4m+/nl(2m) 241 (2m 4+ 1)*(2m)
Sam?| Gm+ DT (2m+3)  (4m+ 1)I(4m) 4A% (€ + n)ym? /7l (4m) " -
8 B 22+2m + 1 + (8m+ 1)1—~(4m + %) (8 + 1)r(4 + 2)

m

4ma/nl(2m) 2! (2m + 1) (2m)
(Am+ 1) (2m+1) (4m + 1)[(4m)
22+2m + 1
2+ 2m
4ma/ml(2m) 211 (2m 4 1)I*(2m)
(4m+1)T(2m + 1) (4m + 1)T(4m) N 4A%e(E + n)m?/al (4m)

i 8m+ 1)I'(4m +1
2+2m

dm?ax [k A%€(E + n + 40) + e — 2ax]

o F1(242m,2 4+ 4m; 3 + 2m; —1)
; (66)

—8am?
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da(t)
dt

= 2 ax(1), (67)

16 muB*m*T(2(2m + 1)m)T(2m + 1)

2

[4(2m + 1)m+ 1T (2(2m + 1)m + 1) [(2m)

dk(t)

— 2 A4m
a

2¢0 Kk sech 4™(x)
4mA
dmy/m T(2m) 21 (2m+ 1)I?(2m)

16epBm2T (2m +1) | Am+1T(2m+%)  (dm+ DI (4m)

ﬁr(2m) 22+2m +1 ’
———— F1(2+2m,2+4m; 3+ 2m; —1)
242m o

1
o F <§,2m; 2m +1; sech2($)>

2¢BSA' T (2(2m + 1)m)T (2m + 1)
r2m)C(2(2m+ 1)m +1)
4my/ml(2m) 241 (2m + 1)I%(2m)
8B mAT (2m+1) | (4m+1)L(2m+1)  (4m+ 1) (4m)

ﬁF(Qm) 22+2m + 1 ’
—Z T FI(2+2m,2 + 4m3 + 2m; —1)
2+2m

dB(t) 2B [dA(t)

_ 2
A eAﬁK}‘L

(69)

nbA*"\/nl(2(n 4 1)m)
I(2(n+1)m+3)

(. + 0) A" /7L (2(2m + 1)m)
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4 Conclusions

Our study recovers the dynamical system of soliton parameters for super-sech and super-Gaussian pulses, as described in
this paper. The details of the VP with the implementation of the Euler-Lagrange’s equation to the NLSE with power-
law of nonlinearity indicated in the current work have not been previously reported. These parameter variations, namely
the dynamical system opens up with an avalanche of opportunities to study optical soliton sciences further along. This foun-
dation stone of results pave way to further future investigations in this chapter. Later, the dynamical system would be
revealed for additional forms of SPM that have not yet been considered. The studies would later be extended to birefringent
fibers and DWDM topology. These would give an increased perspective to carry out the analysis further along. This would
also be applicable to various additional devices and other forms of waveguides, including optical metamaterials, magneto-
optic waveguides, optical couplers, gap solitons and many others. The results of these studies will be reported soon after we
align them with the pre-existing ones [21-25]. All of these activities are currently underway.
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